#### PES from ML or Physics

#### János Daru

#### Eötvös Loránd University, Budapest Department of Organic Chemistry

Occam vs. ML 2024, Szeged

## Content







## Content







#### Electron structure $\rightarrow$ forcefields



#### Electron structure $\rightarrow$ forcefields



#### Local correlation calculations Not linear-scaling, not yet Full CI, but a huge step forward!



*JCTC* (2015), **11**: 4972 | *Chem. Soc. Rev.*, (2014), **43**: 5032 *JCTC* (2017), **13**: 3198

## Content







## Basics



# Linear Regression

$$y_n = \mathbf{x}_n^{\top} \boldsymbol{\beta} + \varepsilon_n.$$
(1)  
$$\hat{\boldsymbol{\beta}} = (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{y}.$$
(2)

Regularized case (Ridge Regression):

$$\hat{\boldsymbol{\beta}} = (\lambda \mathbf{I} + \mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{y}.$$
 (3)

# Kernel Ridge Regression



# Kernel Ridge Regression

$$y_n = [\phi(\mathbf{x}_n)]^\top \boldsymbol{\beta} + \boldsymbol{\varepsilon}_n \tag{4}$$

$$\hat{\boldsymbol{\beta}} = (\lambda \mathbf{I} + \boldsymbol{\Phi}^{\top} \boldsymbol{\Phi})^{-1} \boldsymbol{\Phi}^{\top} \mathbf{y}.$$
 (5)

$$\hat{\boldsymbol{\beta}} = \boldsymbol{\Phi}(\lambda \mathbf{I} + \boldsymbol{\Phi} \boldsymbol{\Phi}^{\top})^{-1} \mathbf{y}.$$
(6)

$$y = [\phi(\mathbf{x})]^{\top} (\lambda \mathbf{I} + \boldsymbol{\Phi} \boldsymbol{\Phi}^{\top})^{-1} \mathbf{y}.$$
 (7)

Kernel Trick (kernels instead of monomials):  $k(\mathbf{x}, \mathbf{y}) = \langle \phi(\mathbf{x}), \phi(\mathbf{y}) \rangle$ 

$$\mathbf{K}_{ij} = k(\mathbf{x}_i, \mathbf{x}_j), \tag{8}$$

$$\mathbf{k}(\mathbf{x}) = [k(\mathbf{x}, \mathbf{x}_1), \dots, k(\mathbf{x}, \mathbf{x}_N)]^{\top}.$$
(9)  
$$y = [\mathbf{k}(\mathbf{x})]^{\top} (\lambda \mathbf{I} + \mathbf{K})^{-1} \mathbf{y}$$
(10)

#### GPR

We assume a Gaussian distribution both for the measured quantity and its error:

$$y_n = f(\mathbf{x}_n) + \varepsilon_n, \tag{11}$$

$$f \sim \mathcal{N}(m(\mathbf{x}), k(\mathbf{x}, \mathbf{x})).$$
 (12)

$$\mathbb{E}[\mathbf{f}_*] = K(\mathbf{X}_*, \mathbf{X})[\sigma^2 \mathbf{I} + K(\mathbf{X}, \mathbf{X})]^{-1}\mathbf{y}$$
(13)

For comparison a KRR expression:

$$y = [\mathbf{k}(\mathbf{x})]^{\top} (\lambda \mathbf{I} + \mathbf{K})^{-1} \mathbf{y}$$
(14)

# Neural Network



#### Electron structure $\rightarrow$ forcefields

ML



# **Classical Force Fields**

$$V(r) = \sum_{\text{bonds}} k_b (b - b_0)^2 + \sum_{\text{angles}} k_{\theta} (\theta - \theta_0)^2 + \sum_{\text{improp.}} k_{\omega} (\omega - \omega_0)^2 + \sum_{\text{Urey-Bradley}} k_u (u - u_0)^2 + \sum_{\text{dihedrals}} k_{\phi} \left[ 1 + \cos(n\phi - \delta) \right] + \sum_{\text{nonbond.}} 4\varepsilon_{ij} \left[ \left( \frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left( \frac{\sigma_{ij}}{r_{ij}} \right)^6 \right] + \sum_{\text{nonbond.}} \frac{q_i q_j}{4\pi\varepsilon_0 r_{ij}}$$



# The first ML forcefield



M. Scheffler: Chem. Phys. Lett. (2004), 395: 210

# General ML-FF scheme



## **Genearal Global ML-FF scheme**



# **Eigenvales of the Overlap matrix**

Coulomb Mátrix:

Bag of Bonds:





Encoded Bonds:





A. v. Lilienfeld: JCP (2018), 148: 241718

# **Eigenvales of the Overlap matrix**

$$\begin{split} \left\langle \phi_{i}^{s} \left| \phi_{j}^{s} \right\rangle &= S_{ij} \\ S_{ij} &= S_{ji} = \left( \frac{2\sqrt{\alpha_{i}\alpha_{j}}}{\alpha_{i} + \alpha_{j}} \right)^{3/2} \exp\left[ \frac{-\alpha_{i}\alpha_{j}}{\alpha_{i} + \alpha_{j}} r_{ij}^{2} \right] \\ \left\langle \phi_{i}^{p_{x}} \left| \phi_{j}^{s} \right\rangle &= \frac{1}{\sqrt{\alpha_{i}}} \frac{\partial S_{ij}}{\partial x_{i}} \\ &= -\left( \frac{2\sqrt{\alpha_{i}\alpha_{j}}}{\alpha_{i} + \alpha_{j}} \right) (x_{i} - x_{j}) S_{ij} \\ \left\langle \phi_{i}^{p_{x}} \left| \phi_{j}^{p_{x'}} \right\rangle &= \left( \frac{2\sqrt{\alpha_{i}\alpha_{j}}}{\alpha_{i} + \alpha_{j}} \right) S_{ij} \\ &\times \left[ \delta_{x,x'} - \frac{2\alpha_{i}\alpha_{j}}{\alpha_{i} + \alpha_{j}} (x_{i} - x_{j}) (x_{i'}' - x_{j'}') \right], \end{split}$$

S. Goedecker: JCP (2013), **139**: 184118

# Applications



T. Bligaard: *PRL* (2019), **122**: 156001

# $\Delta$ -Learning



A. v. Lilienfeld: *JCTC* (2015), **11**: 2087

# General Local ML-FF scheme



Pros: PBC, scaling Cons: missing long-range interactions PES

## Parrinello & Behler: HDNNP



Chem. Sci., (2017), 8: 6924 | PRL (2007), 98: 146401

# Parrinello & Behler: HDNNP



PRL (2007), 98: 146401

#### Csányi & Bartók: SOAP+GAP



|  | Phys. | Rev. | В. | (2017), | <b>87</b> : | 219902 |
|--|-------|------|----|---------|-------------|--------|
|--|-------|------|----|---------|-------------|--------|

# $\overline{\mathrm{T}} > 0 \mathrm{K}$



T. E. Markland: *JPCL* (2018), **9**: 851

# T>0 K, $\Delta$ -Learning



W. Yang: JCTC (2018), 14: 1442

# Long-range interactions





# PhysNet



M. Meuwly: JCTC (2019), 15: 3678

## **Electronegativity** Equilibration

$$\begin{split} U_{\text{tot}}(\{q_i\}) &= \sum_{i=1}^{N} \left( E_i^0 + \chi_i q_i + \frac{1}{2} J_{ii} q_i^2 \right) \\ &+ \frac{1}{2} \iint \frac{\rho(\mathbf{r}) \rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} \, d\mathbf{r} \, d\mathbf{r}', \qquad \rho_i(\mathbf{r}) = \frac{q_i}{\alpha_i^3 \pi^{\frac{3}{2}}} \exp\left(-\frac{|\mathbf{r} - \mathbf{r}_i|^2}{\alpha_i^2}\right). \\ U_{\text{tot}}(\{q_i\}, \{\mathbf{r}_i\}) &= \sum_{i=1}^{N} \left[ E_i^0 + \chi_i q_i + \frac{1}{2} \left( J_{ii} + \frac{2\gamma_{ii}}{\sqrt{\pi}} \right) q_i^2 \right] \\ &+ \sum_{i>j}^{N} q_i q_j \frac{\operatorname{erf}(\gamma_{ij} r_{ij})}{r_{ij}}, \qquad \left( \begin{array}{c} & 1 \\ \frac{1}{1 & \dots & 1} & 0 \end{array} \right) \begin{pmatrix} q_1 \\ \vdots \\ \frac{2\gamma_{ii}}{\lambda} \end{pmatrix} = \begin{pmatrix} -\chi_1 \\ \vdots \\ -\chi_N \\ q_{\text{tot}} \end{pmatrix} \end{split}$$

S. Goedecker: Phys. Rev. B. (2015), 92: 045131

# 4. Generation NN:



S. Goedecker & Behler: Nat. Commun. (2021), 12: 398

 $\mathrm{T} > 0 \ \mathrm{K}$ 



#### G. A. Voth: JCTC (2022), 18: 599

## Content







# ab initio PIMD



#### Nat Rev Chem 2, (2018) 0109

# ab initio PIMD



#### pros:

- PBC explicit solvent
- PBC interfaces
- anharmonicity
- dynamical quantities
- decent NQE

#### issues:

- extreme expe\$\$\$ive
- cost limitted level of theory, scale and time scale

37/49

# **CCMD** - LocalCC as reference

ML



#### Local correlation calculations Not linear-scaling, not yet Full CI, but a huge step forward!



*JCTC* (2015), **11**: 4972 | *Chem. Soc. Rev.*, (2014), **43**: 5032 *JCTC* (2017), **13**: 3198

39 / 49

# **CCMD** - LocalCC as reference

ML



 $\mathbf{ML}$ 

#### **ML: Machine Learning Potentials**



Chem. Sci., (2017), 8: 6924 | PRL (2007), 98: 146401

49

#### Electrostatics

$$E^{\rm lr} = \sum_{A < B} \frac{Q_A Q_B}{r_{AB}} g_{AB}(r_{AB}), \qquad (15)$$

where  $Q_A$  and  $Q_B$  are the partial atomic charge of atom Aand B, i.e. O and H, while  $g_{AB}(r_{AB})$  is the Gauss-Gauss Coulomb integral attenuation factor at the interatomic distance  $r_{AB}$ 

$$g_{AB}(r_{AB}) = \operatorname{erf}\left(\sqrt{\frac{a_A a_B}{a_A + a_B}}r_{AB}\right).$$
 (16)

The short-range core-core repulsions within the system are represented using the pairwise Yukawa potential,

$$E^{\rm sr} = \sum_{A < B} \frac{Z_A Z_B}{r_{AB}} \exp(-\beta_{AB} r_{AB}), \qquad (17)$$

# ML PIMD



#### pros:

- PBC explicit solvent
- PBC interfaces
- anharmonicity
- NQE
- approx. dynamical quantities

issues:

- PES can be unphysical
- iterative refinement is needed
- labor intensive







| T          |                   |                   |                      |
|------------|-------------------|-------------------|----------------------|
| Calculated | $0.244 \pm 0.002$ | $1.733 \pm 0.029$ | to $2.992 \pm 0.065$ |

## Learned representations



# Equivariance



# Equivariance

$$\begin{split} \textbf{Allegro} \qquad & \mathbf{V}_{n,\ell_{1},p_{1}}^{ij,L}, \mathbf{v}_{2},p_{2}) \rightarrow (\ell_{out},p_{out}) = \sum_{k \in \mathcal{N}(i)} w_{n,\ell_{2},p_{2}}^{ik,L} \left( \mathbf{V}_{n,\ell_{1},p_{1}}^{ij,L-1} \otimes \vec{Y}_{\ell_{2},p_{2}}^{ik} \right) \\ & = \sum_{k \in \mathcal{N}(i)} \mathbf{V}_{n,\ell_{1},p_{1}}^{ij,L-1} \otimes \left( w_{n,\ell_{2},p_{2}}^{ik,L} \vec{Y}_{\ell_{2},p_{2}}^{ik} \right) \\ & = \mathbf{V}_{n,\ell_{1},p_{1}}^{ij,L-1} \otimes \left( \sum_{k \in \mathcal{N}(i)} w_{n,\ell_{2},p_{2}}^{ik,L} \vec{Y}_{\ell_{2},p_{2}}^{ik} \right) \end{split}$$

A. Musae

$$\mathsf{MACE} \qquad \qquad \mathbf{m}_{i}^{(t)} = \sum_{j} \boldsymbol{u}_{1} \left( \sigma_{i}^{(t)}; \sigma_{j}^{(t)} \right) + \sum_{j_{1}, j_{2}} \boldsymbol{u}_{2} \left( \sigma_{i}^{(t)}; \sigma_{j_{1}}^{(t)}, \sigma_{j_{2}}^{(t)} \right) + \dots + \sum_{j_{1}, \dots, j_{\nu}} \boldsymbol{u}_{\nu} \left( \sigma_{i}^{(t)}; \sigma_{j_{1}}^{(t)}, \dots, \sigma_{j_{\nu}}^{(t)} \right),$$

I. Batatia et al. arXiv:2206.07697 (2022)

$$A_{i,kl_1m_1}^{(1)} = \sum_{j \in \mathcal{N}(i)} R_{kl_1}^{(1)}(r_{ji}) Y_{l_1}^{m_1}(\hat{r}_{ji}) \mathcal{W}_{kz_j}^{(1)}.$$

# $\begin{array}{l} \textbf{Symmetry constrains} \rightarrow \\ \textbf{improved gerneralization} \end{array}$



slide from: Albert Musaelian

#### Thank you for ...



... collaboration:

Andreas W. Hauser Dominik Marx Jörg Behler Zoltán Novák Gergely Tolnai Tibor Soós Szilárd Varga

